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A model equation is derived which approximately describes the propagation of 
periodic surface waves in water of slowly varying depth. Numerical solutions to 
the model equation are obtained for the scattering of an incident plane wave by 
a conical island. 

1. Introduction 
The maximum run-ups of tsunamis (or seismic sea waves) on islands are often 

much greater than those on straight coastlines. Thus the modification of waves 
due to the seabed topography is an important aspect of the tsunamic pheno- 
menon. Although tsunamis are dramatically nonlinear in their final run-up with 
amplitudes as high as 10 m, out at  sea their amplitudes are considerably smaller 
and it is reasonable to assume that the topographic modification prior to run-up 
can be accurately described by linearized equations. Regrettably, the classical 
linear theory of water waves is not well suited to numerical calculations and 
there are only a few depth topographies that are amenable to analytic solution 
(Ursell 1952). Thus progress in the understanding of topographic modification 
has depended upon the use and invention of further simplifying approximations. 

The most widely used approximation is that of linear shallow-water theory, 
in which the vertical structure of the waves is ignored. For this theory to be 
applicable to an oceanic situation it suffices that the period of the waves exceeds 
5 min (Summerfield 1972). Another approximation is based upon the fact that 
the slope of the seabed is extremely small, rarely exceeding 0.01. According to 
the linear shallow-water theory and to the mild-slope theory, there are two 
mechanisms that contribute to the relatively large run-ups that occur at islands: 
refractive focusing (Eckart 1950; Keller 1958), and resonance of virtual trapped 
modes (Homma 1950; Shen, Meyer & Keller 1968). A major difference between 
the two theories, as presented in the literature, is that the linear shallow-water 
theory can yield detailed quantitative results concerning wave amplitudes 
(see Longuet-Higgins 1967, figures 9 and lo), while the mild-slope theory predicts 
only approximate resonance frequencies (Shen et al. 1968; Smith 1974). 

The apparent shortcomings of the mild-slope theory can be attributed to the 
fact that it has always been used in conjunction with the methods of short-wave 
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asymptotics. In  $ 2  a model equation is proposed for which the geometrical- 
optics solution agrees to first order in the seabed slope with the solution for water 
waves derived by Keller (1958). Two tests of this model equation are presented 
in $3. Then in $44 and 5 numerical solutions to the model equation are obtained 
for the scattering of a plane wave at a conical island. For shallow water the 
mild-slope equation reduces to the linear shallow-water wave equation. Thus 
we can check that the methods used in this paper yield results consistent with 
those of Lautenbacher (1970). Indeed, for irregularly shaped islands or sills the 
numerical methods for solving the linear shallow-water wave equation proposed 
by Vastano & Reid (1967) and by Lautenbacher (1970) would appear to be the 
best methods available for solving the mild-slope equation. 

2. Model equations 
The description of surface waves propagating over a seabed of mild slope that 

is presented by Keller (1958) and by Shen et al. (1968) is the first approximation 
in an asymptotic expansion for monochromatic waves. If first-order results 
suffice, then the asymptotic method of Keller & Rubinow (1960) permits the 
same description to be recovered from any model equat,ion for which the local 
group and phase velocities at  the frequency of interest are in agreement with the 
classical linear theory of water waves. One such model equation is 

Here 5 is the wave height, V the horizontal gradient operator, w the angular 
frequency of interest and cp and cg respectively are the local phase and group 
velocities of waves with frequency w .  It may readily be verified that the local 
dispersion relation for the model equation (1) has the required two-point contact 
at a frequency o with the exact local dispersion relation for water waves. 

For monochromatic wavea of frequency w equation (1) can be simplified to the 
mild-slope equation: 

where p and q are the product and quotient respectively of the local group and 
phase velocities. If h is the local water depth and g is the gravitational accelera- 

(2) v . (PO<) + w2q< = 0, 

tion, then tanh kh 1 2kh 
p = gh-- kh 2 (1 +-) sinh2kh ' 

q = Q( 1 + 2khlsinh 2kh), 

w2 = gk tanh kh. 

(3 b )  

(3c) 

where k is the positive real root of the transcendental equation 

We note that (2) gives an exact description of the propagation of water waves in 
water of constant depth. A formal derivation of (2) is given in appendix A. 

Eckart (1951) proposed a model equation of the same form as (2) but with 

pE = cA w2 2 [ 1 -exp (-?)I, qE = f [ I  +exp (-?)I. (4) 
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FIGURE 1. Comparison of the alternative p's and q's. 

A comparison of the alternative equations (3) and (4) is presented in figure 1. 
Eckart (1951) gave several comparisons between the solutions to his model 
equation and the exact solutions for water of constant depth, and figure 1 corre- 
sponds to the test that caused him to criticize the accuracy of his model. If 
the waves are of high frequency or if the water is deep (i.e. d h / g  $ 1) then from 
both (3) and (4) we find that 

02pIg2 N 4, q - Q. 
These deep-water approximations are accurate to within 10 yo in q and 5 yo in 
p if dh /g  exceeds 2.2. Likewise, if the waves are of low frequency or if the water 
is shallow (i.e. w2h/g 6 1) then (3) and (4) are again in agreement: 

P -gh,  q -  1, 

and we recover the linear shallow-water equations for waves of frequency w. 
Furthermore, it  follows that, in this limit, (2) remains valid even if there are 
abrupt changes in depth. The shallow-water approximations are accurate to 
within 10 "/o in r, and 5 % in q if w2h/g is less than 0.15. 

3. Tests of the model equation 
In  practice the criterion by which a model equation is judged is not its asymp- 

totic correctness, but its numerical accuracy for moderate slopes. An indication 
of the range of slopes for which the mild-slope equation is numerically accurate 
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FIGURE 2. Dispersion relation for edge waves. 

can be obtained by comparing the exact (Ursell 1952) and approximate dis- 
persion relations for edge waves. For waves of longshore wavenumber E on a 
straight beach of depth h = ax equation (2) reduces to 

+(W2q--Pp)c=o. 

The conditions for 5 to be an edge wave are that it is finite at  the shoreline and 
decays exponentially far from the shore. It is straightforward to solve numeri- 
cally the resulting Sturm-Liouville eigenvalue problem for 1. Figure 2 compares 
these numerical solutions with the exact dispersion relation 

w2Z-lg-1 = sin [(Zn + I)  tan-la], 

where n is the made number. It is only for the lowest mode that the exact and 
approximate results are graphically distinguishable. 

A more extreme test of the mild-slope equation is to apply it to a depth dis- 
continuity. From (2) we can ascertain that the natural jump conditions are 

where the subscripts refer to the two sides of the depth discontinuity and 31th 
denotes the normal derivative. The reflexion and transmission of a wave propa- 
gating normal to a step can be represented by 

el = c 2 t  Placllan = P2ac2lan? 

e-ikix+ReikiX for x < 0,  

T e - i k z Z  for x > 0, 
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FIGURE 3. Exact (continuous curves) and approximate (dashed curves) reflexion and trans- 
mission coefficients. The subscripts D and S respectively refer to transmission into deep 
and shallow water. 

where the reflexion and transmission coefficients R and T are given by 

For the special case in which one of h, and h2 is i nh i t e  Newman (1965) has 
obtained numerical solutions of the exact linear equations for water waves. 
Figure 3 compares the exact and approximate values for R and T. Fortuitously, 
the model equation is most accurate precisely when the wave amplitudes are 
largest. 

4. Scattering theory for circularly symmetric islands 
Circular islands are important in that the compromise between mathematical 

simplicity and realistic geometry permits meaningful comparisons between 
different methods of studying the topographic modification of water waves 
(these methods include laboratory experiments, analog electrical circuits, 
numerical modelling and exact and approximate analytic calculations). Thus 
it is desirable that we should have an efficient means of solving the mild-slope 
equation (2) for the scattering of an incident plane wave by a circularly sym- 
metric island. The change of dependent variable $ = p-ic turns (2) into a 
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Schrodinger equation. Hence the scattering theory for (2) can be regarded as 
being known (Morse & Feshbach 1953, chap. 12. However, for completeness we 
give a direct derivation of the results that are used. 

The total wave height 5 comprises the incident wave eirx and a scattered wave 
6. If the time dependence is eiot with w positive, then the scattered wave is out- 
going at  large distances only if 

C s -  = c- eirx - f (0) e-iKrr-4 

The total wave will be represented as the linear combination 

as r + 00, 

where (r,  0) are the usual cylindrical polar co-ordinates. 

m 

m=l 
(r = Aoeixo([,(r)+2 A,eixm[,(r) cosm8 (5) 

of real solutions Cnh(r) cosrn6' of our model equation (2). The functions c, satisfy 
the initial-value problem 

f (rp%) + (o~qr-?) 5, = 0, 

c, = 1 at the shoreline r = a,  limrpdc,/dr = 0. 

Now the incident wave has an angular representation in terms of Bessel func- 

exp ( ~ K x )  = J O ( ~ r )  + 2 C imJm(Kr) cosrn6' 

(Morse & Feshbach 1953, p. 620), whose general term has the asymptotic form 

imJ,(Kr) - (2/n~r)*{*exp[i(~r-&r)]+( - l ) m ~ e x p [ - i ( ~ r - ~ n ) ] ) .  

In  order to eliminate the radially incoming wave factor exp [i(Kr - in)] in the 
asymptotic expansion for the scattered wave Cs it is necessary that as r+co 
the function C,(r) has the asymptotic form 

tions: 00 

m=l  

b ( r )  N A;1(2/?r~r )3~~~ (~r--?r-x,),  (7) 

where A, and xm are the same as in expression (5). 
If the initial-value problem (6) is solved numerically then the asymptotic 

behaviour of Crn for large values of r is the least reliable feature of the solution. 
Thus it is desirable to replace (7)  by a more stable means of evaluating A ,  and 
xnl. To do this, we employ the approximate (far field) Green's function 

Gm(r, T )  = +n[Jm(~5) Y;(KT) -J,(KY) Ym(~F)] 
to  derive an integral-equation version of the initial-value problem (6): 

( r  < T ) ,  
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Hence, once we have an approximation to Crn over the island shelf we have an 
accurate means of determining the far field: 

where the linear functionals Ll and L, are the limiting values of the corresponding 
multiplying factors in the integral equation. The required stable equations for 
A ,  and xfn are 

A,, = (L2, + .Li)d, xm = +mn + arctan (L2/Ll) + &( 1 - sgn Ll) n, (8) 

where arctan (L2/L1) is restricted to ( -in, in). 
We note that the results (8) are strongly dependent upon the far-field wave- 

number K ,  through its occurrence in the argument of the Bessel functions. This 
can be expected to be a major source of error if an approximate dispersion rela- 
tion, such as the shallow-water approximation, is used instead of the exact 
dispersion relation (3  c). 

5. Conical islands 
In  order to exemplify the use of (5), (6) and (8) we shall obtain numerical 

solutions for the scattering of plane periodic waves by conical islands.? There 
are two reasons for choosing this class of problems. First, the shallow-water 
calculations of Lautenbacher (1970) provide an independent check on the 
accuracy of the numerical methods used in the present paper. Second, laboratory 
experiments involving a conical island are currently being conducted by Barnard, 
Pritchard and Provis at the University of Essex, and it is hoped that the numeri- 
cal results may assist the interpretation of the experimental results. 

At a beach p = 0, and consequently the differential equation ( 6 )  is singular at 
the shoreline. Direct finite-difference calculations for the regular solution are ill 
conditioned near singular points. Indeed, Cohen & Jones (1974) have suggested 
that for such differential equations the solutions should be obtained by econo- 
mized power-series expansions. Here we make the compromise of deriving a 
four-term Taylor series for c,. This is used to start the solution (see appendix B), 
and away from the beach a standard finite-difference approximation is used 
(Gill 1951). The calculations were tested for self-consistency by changing the 
step lengths by factors of two. 

Lautenbacher (1970) studies three conical islands, which he designates as 
Hawaii, Oahu and Small. For each island, graphs are presented of the maximum 
wave amplitude at  the coast for incident waves of several different wavelengths. 
To reproduce these results by the methods of $4 we put p = gh and q = 1 and 
evaluate the amplitudes A, and phases xrn for the first six modes. The maximum 
wave amplification at  the coast is given by the equation 

6 

WL=l 

151 + leixoA,+2 C eixmAn,cosmBI. 

t Solutions for a parabolic island have been obtained by Jonsonn, Skovgaard and 
Brink-Kjaer (private communication). 
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FIGURE 4. Comparison between finite-difference results (circles) and truncated modal 
expansions (continuous curves) for the maximum wave amplification at the coast. 
(a)  Hawaii. (b) Oahu. ( c )  Small. 
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FIGURE 6. Frequency dependence of the amplitude factors A,,,. 

Figures 4 (a)-@) demonstrate the agreement between the truncated modal 
expansions of this paper and Lautenbacher's finite-difference calculations for 
the three islands. The parameter h is the wavelength of the incident waves 
relative to the diameter of the island shelf. 

The experiments being conducted by Barnard, Pritchard and Provis involve 
a cone of slope a = 0.1 with a shelf of radius 20 times that of the island. Figure 
5 shows the computed frequency variation of the amplitude factors A,,, for this 
particular cone geometry. The vertical lines are the resonance frequencies pre- 
dicted for the edge wave with zero seaward mode number according to the short- 
wave asymptotic solution of Smith (1974): 

0 N (gma/a)* [i -&-I+ O(m-2)]. 

There are two noteworthy features in figure 5. First, for each mode the amplitudes 
are well in excess of one once the frequency is higher than the first resonance 
frequency of the mode. These uniformly large amplitudes can be attributed to 
the mechanism of refractive focusing (Eckart 1950; Keller 1958). Second, for 
the fist significant edge-wave resonance (in mode 3) the value of w2h/g at the 
edge of the island cone is 0.43, which is well outside the range in which the shallow- 
water theory can be regarded as being an adequate approximation to the mild- 
slope theory. 

The authors wish to thank Dr David Provis for several helpful discussions. 
R. S. was supported by the Central Electricity Generating Board during part of 
this collaboration. 
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Appendix A. Formal derivation of the mild-slope equation 

with angular frequency w satisfies the equations 
In the classical linear theory of water waves the velocity potential q5 for waves 

V2q5+a2q5/a22 = 0, = w2q5/g at z = 0, 

a$/az+Vh.V$ = 0 at  z = -h, 

where z measures the height above the mean free mrface and V denotes the 
horizontal gradient operator. The method of separation of variables leads to 
consideration of the Sturm-Liouville problem 

d2wldz2+h(h) w = 0, dwldz = w2w/g a t  z = 0, dwldz = 0 at z = -h, 

and the propagation of water waves is assooiated with the only eigenmode for 
which the eigenvalue h(h) is negative, i.e. 

w,(z; h) = cash [ k ( ~  + h)]/cosh kh, A, = - k2, 

where k satisfies the local dispersion relation (3  c). Accordingly we represent q5 by 

q5 = a(x)  wo(z; h(x) )  + $(x, z ) ,  where w,$dz = 0. 

Taking the w, component of the equations of motion (i.e. applying Green’s 
identity to w,, and q5) we obtain 

The integrals on the left-hand side of (A 1) have the values p and -w2q/h, 
respectively. Hence the mild-slope equation (2) can be derived if we can justify 
the neglect of the right-hand-side ‘forcing’ terms in (A 1). The required estimates 
differ according to the local depth of the water. It has already been noted in 
§ 2 that for shallow water the validity of the mild-slope equation should not de- 
pend upon the actual slope, so we shall concentrate here upon the case in which 
the water depth is comparable to the local wavelength. If $he seabed slope is 
small, O(B) say, then relative to  the left-hand-side terms in (A 1) the ‘forcing’ 
terms are of orders €2 and e1$1/1a\. Thus it remains to estimate the magnitude 
of the non-propagating part $ of the velocity potential. One means of doing this 
is to represent $ by a superposition of eigenmodes: 

m 

i=l 
$ = c aj(x) w&; Mx)). 

Taking the wi component of the equations of motion we can derive an equation 
for aj of the same form as (A 1) but with the important difference that the hi 
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are all positive. This difference means that for the non-propagating modes the 
size of ui can be estimated from the local magnitude of the ‘forcing’ terms (the 
name non-propagating is due to this localness property). Thus we can estimate 
that I$\  = O(slal), and consequently the mild-slope equation (2) agrees with 
(A 1) to order s2. 

For the propagating mode an equation error O(e2) does not imply that the 
solutions are accurate to O(e2).  As the waves propagate over a linear distance 
O(e-I), in which the depth varies, the cumulative effect of phase errors could 
lead to errors in the solution O(s). Furthermore, in the main text the wave height 
5 was assumed to satisfy the mild-slope equation, yet we have only derived the 
equation for the wo component of the velocity potential. For periodic waves the 
wave height is directly proportional to the value at the mean free surface of the 
total velocity potential. Thus the actual wave height can be expected to differ 
from the solution of the mild-slope equation by O(s), the two sources of error 
being the presence of modes other than wo and the intrinsic error in the mild- 
slope equation as applied to the w, mode. 

Appendix B. The solution near a beach 
If we are to obtain a series solution of (6) about the regular singular point 

r = a, then our first task is to obtain a series solution in powers of x = (r - u)/a 
for the coefficients p and q. After a straightforward calculation we find from 
(3) that 

pwyg2 = u-~u2+&u3-&u4+ ..., 
q=1-r,+2- 3 45u 2 +& u3+ ..., 

where u = u2h/g (cf. figure 1). For the special case of a conical island with beach 
slope a we have u = ux(w2a/g), so the above expansions can be converted trivially 
into Taylor series with respect to x. 

The required series solution is written as 

C =  l+y1x+y,x2+y3x3+... . 
Substitution into the differential equation, equating coefficients and re-arranging 
yields 

y1= -(w2+9), 

y2 = Hm2 - 71 + (1. - a2) ??I’ 
y3 = -*[{lo - (5  -$az) y l } yz  +yl{l - (3  - 2a2) y1 + (1 - %a2 +$a4) yt } ] .  

This regular series suffices since the singular solution is inappropriate to the 
physical problem. 
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